The acetylation of transcription factor HBP1 by p300/CBP enhances p16INK4A expression
نویسندگان
چکیده
HBP1 is a sequence-specific DNA-binding transcription factor with many important biological roles. It activates or represses the expression of some specific genes during cell growth and differentiation. Previous studies have exhibited that HBP1 binds to p16(INK4A) promoter and activates p16(INK4A) expression. We found that trichostatin A (TSA), an inhibitor of HDAC (histone deacetylase), induces p16(INK4A) expression in an HBP1-dependent manner. This result was drawn from a transactivation experiment by measuring relative luciferase activities of p16(INK4A) promoter with HBP1-binding site in comparison with that of the wild-type p16(INK4A) promoter by transient cotransfection with HBP1 into HEK293T cells and 2BS cells. HBP1 acetylation after TSA treatment was confirmed by immunoprecipitation assay. Our data showed that HBP1 interacted with histone acetyltransferase p300 and CREB-binding protein (CBP) and also recruited p300/CBP to p16(INK4A) promoter. HBP1 was acetylated by p300/CBP in two regions: repression domain (K297/305/307) and P domain (K171/419). Acetylation of Repression domain was not required for HBP1 transactivation on p16(INK4A). However, luciferase assay and western blotting results indicate that acetylation of P domain, especially K419 acetylation is essential for HBP1 transactivation on p16(INK4A). As assayed by SA-beta-gal staining, the acetylation of HBP1 at K419 enhanced HBP1-induced premature senescence in 2BS cells. In addition, HDAC4 repressed HBP1-induced premature senescence through permanently deacetylating HBP1. We conclude that our data suggest that HBP1 acetylation at K419 plays an important role in HBP1-induced p16(INK4A) expression.
منابع مشابه
Acetylation of Human TCF4 (TCF7L2) Proteins Attenuates Inhibition by the HBP1 Repressor and Induces a Conformational Change in the TCF4::DNA Complex
The members of the TCF/LEF family of DNA-binding proteins are components of diverse gene regulatory networks. As nuclear effectors of Wnt/β-catenin signaling they act as assembly platforms for multimeric transcription complexes that either repress or activate gene expression. Previously, it was shown that several aspects of TCF/LEF protein function are regulated by post-translational modificati...
متن کاملFactor-specific modulation of CREB-binding protein acetyltransferase activity.
CREB-binding proteins (CBP) and p300 are essential transcriptional coactivators for a large number of regulated DNA-binding transcription factors, including CREB, nuclear receptors, and STATs. CBP and p300 function in part by mediating the assembly of multiprotein complexes that contain additional cofactors such as p300/CBP interacting protein (p/CIP), a member of the p160/SRC family of coactiv...
متن کاملAcetylation of conserved lysines in bovine papillomavirus E2 by p300.
The p300, CBP, and pCAF lysine acetyltransferase (KAT) proteins have been reported to physically interact with bovine (BPV) and human (HPV) papillomavirus E2 proteins. While overexpression of these KAT proteins enhances E2-dependent transcription, the mechanism has not been determined. Using RNA interference (RNAi) to deplete these factors, we demonstrated that E2 transcriptional activity requi...
متن کاملDistinct Roles for CBP and p300 on the RA-Mediated Expression of the Meiosis Commitment Gene Stra8 in Mouse Embryonic Stem Cells
In mammalian germ cells, meiotic commitment requires the expression of Stimulated by retinoic acid gene 8 (Stra8), which is transcriptionally activated by retinoic acid (RA). However, little is known about the epigenetic mechanism by which RA induces Stra8 expression. Utilizing a chromatin immunoprecipitation assay (ChIP), we showed that RA increases histone acetylation at the Stra8 promoter in...
متن کاملInvolvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells.
Transforming growth factor-β1 (TGF-β1)-induced expression of plasminogen activator inhibitor-1 (PAI-1) and p21 in renal mesangial cells (MCs) plays a major role in glomerulosclerosis and hypertrophy, key events in the pathogenesis of diabetic nephropathy. However, the involvement of histone acetyl transferases (HATs) and histone deacetylases (HDACs) that regulate epigenetic histone lysine acety...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 40 شماره
صفحات -
تاریخ انتشار 2012